A high-efficiency hybrid high-concentration photovoltaic system

نویسندگان

  • Severin Zimmermann
  • Henning Helmers
  • Manish K. Tiwari
  • Stephan Paredes
  • Bruno Michel
  • Maike Wiesenfarth
  • Andreas W. Bett
  • Dimos Poulikakos
چکیده

Photovoltaic power generation is a growing renewable primary energy source, expected to assume a major role as we strive toward fossil fuel free energy production. However, the photovoltaic efficiencies limit the conversion of solar radiation into useful power output. Hybrid systems extend the functionality of concentrating photovoltaics (CPV) from simply generating electricity, to providing simultaneously electricity and heat. The utilization of otherwise wasted heat significantly enhances the overall system efficiency and boosts the economic value of the generated power output. The current system consists of a scalable hybrid photovoltaic–thermal receiver package, cooled with an integrated high performance microchannel heat sink. The package can be operated at elevated temperatures due to its overall low thermal resistance between solar cell and coolant. The effect of the harvested elevated coolant temperature on the photovoltaic efficiency is investigated. The higher-level available heat can be suitable for sophisticated thermal applications such as space heating, desalination or cooling (polygeneration approaches). A total hybrid conversion efficiency of solar radiation into useful power of 60% has been realized. The exergy content of the overall output power was increased by 50% through the exergy content of the extracted heat. An analysis based on the economic value of heat illustrates that the reused heat can double the economic value of such a system. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Design of Stand-alone Hybrid Solar Micro-CHP ‎Systems Using LUS Based Particle Swarm Optimization ‎Algorithm ‎

Utilizing the combined cooling, heating and power generation (CHP) systems to produce cooling, heat and electricity is growing rapidly due to their high efficiency and low emissions in commercial and industrial applications. In conventional CHP systems the deficit of the system power can be purchased from the grid. However, this system cannot be used as the standalone application. The hybrid so...

متن کامل

A Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application

This paper presents a novel multi-port DC/DC converter which is suitable to be used as the interface of hybrid renewable energy systems. The converter contains three unidirectional power flow ports which two of them are input ports and are connected to two independent energy sources while the third one is the output port that feeds a standalone load. Furthermore, the proposed converter contains...

متن کامل

Energy and economic comparison of SOFC-GT, MCFC-GT, and SOFC-MCFC-GT hybrid systems

Conversion of fossil fuels to electrical power is the most popular method of electrical power generation. Due to the depletion of fossil fuels and the increase in air pollution, the necessity of using high efficiency power generation systems is increasing. High temperature fuel cells, such as solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC), have high efficiency. According t...

متن کامل

Energy and Exergy Evaluation of Multi-channel Photovoltaic/Thermal Hybrid System: Simulation and Experiment

In this research, a pilot study and analysis of an innovative multi-channel photovoltaic/thermal (MCPV/T) system in a geographic location (35° 44' 35'' N, 50° 57' 25'' E) has been carried out. This system consists of integrating a photovoltaic panel and two PV/T heat-sink converters. The total electrical, exergy and energy efficiencies of the system at air flow rate of 0.005 kg/s and radiation ...

متن کامل

The effect of SiO2 nanoparticle on the performance of photovoltaic thermal system: Experimental and Theoretical approach

The low conversion efficiency of solar cells produces large amounts of thermal energy to the cells, and with an increase in the temperature of solar cells, their electrical efficiency decreases. Therefore, a hybrid photovoltaic thermal system improves the overall efficiency of the system by adding thermal equipment to the solar cell and removing excessive heat from these cells. In this paper, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016